Evolution Icon Evolution
Paleontology Icon Paleontology

Fossil Friday: The Abrupt Origins of Lagomorphs and Rodents

Photo: Palaeolagus haydeni, James St. John, Wikimedia, CC BY 2.0.

This Fossil Friday features the skull of the fossil rabbit Palaeolagus haydeni from the Oligocene of Nebraska, as we look today into the origins of two orders of placental mammals: the Lagomorpha and Rodentia, which together form the clade Glires within the supergroup (cohort) of Euarchontoglires. Lagomorpha includes the 110 living species of rabbits, hares, and pikas, while rodents with 40 percent (2.600 species) of all living mammal species represent the most diverse mammalian order (Kay & Hoekstra 2008). Rodents, for example, include squirrels, beavers, hamsters, mice, and rats, as well as guinea pigs, gundis, and porcupines.

In my article last week I listed numerous studies that supported Euarchontoglires, of which the vast majority also supported the monophyly of Glires (e.g., Meng & Wyss 2005Springer et al. 2007b, and most recently Gupta & Suggett 2022), while there were only few dissenters (e.g., Arnason et al. 2002). The molecular studies by Li et al. (1990)Graur et al. (1996), and Misawa & Janke (2003) suggested that Lagomorpha is more closely related to primates than to rodents, but these views were unanimously rejected by later studies (see Honeycutt & Adkins 1993Douzery & Huchon 2004Kjer & Honeycutt 2007, and Zhou et al. 2015). This is hardly surprising as rodents and lagomorphs were already classified in a common order Glires by Carl von Linné in the first edition of his famous Systema Naturae (Linnaei 1735), which basically represents the very beginning of the scientific classification of animals and predates any kind of evolutionary thinking. It was Gidley (1912) who separated these two mammalian groups in the distinct orders Lagomorpha and Rodentia and did not consider them as closely related. This view was endorsed in a famous article titled “What, if Anything, Is a Rabbit?” by Wood (1957), and it was also endorsed by Van Valen (1964) and McKenna (1975). Even though for a while “the monophyly of Glires has been one of the most controversial issues in higherlevel mammalian systematics” (Meng et al. 2003), subsequent works increasingly supported the Glires concept (e.g., Simpson 1945), so that Douzery & Huchon (2004) responded to Wood’s classical question with an article titled “Rabbits, if Anything, Are Likely Glires.” Cox & Hautier (2015) therefore concluded in the foreword to their monograph on the evolution of rodents that “at present, the Glires concept is stronger than ever.”

A Cretaceous Origin?

Many molecular clock studies proposed a Cretaceous origin of Glires and its two main branches (e.g., Li et al. 1990Kumar & Hedges 1998Springer et al. 2003Janečka et al. 2007Kay & Hoekstra 2008Meredith et al. 2011Suárez et al. 2011Foley et al. 2016). Archibald et al. (2001) also argued for a Cretaceous origin of Glires based on fossil data, but these were later all refuted as not representing eutherian mammals at all (Wible et al. 20052007Halliday et al. 2015Velazco et al. 2022). Other studies rather supported an early Paleogene origin of Glires and its divergence into the lagomorph and rodent lineages (Huchon et al. 2002Douzery et al. 2003Meng et al. 2003Meng 2004Asher et al. 2005AMNH 2006Horner et al. 2007Wu et al. 2012O’Leary et al. 2013Phillips & Fruciano 2018Upham et al. 2019: fig. 4), to make the theory better fit with the actual fossil record. Meng et al. (2003) revealingly remarked:

Apparently, the molecular clock hypothesis tends to push rodent divergences at various levels of the group deeper into history than what the fossil record indicates. The discrepancy is enormous.

Well, such enormous discrepancies between theoretical predictions and empirical data should give reason to pause and to question the adequacy of the theory.

So let’s have a look at the actual fossil record of Glires. Here is an up-to-date classification of all relevant higher taxa of gliriform mammals with their stratigraphic ranges and earliest fossil representatives (extinct groups are marked with +; age ranges are derived from PaleoDB):

Gliriformes

            +Apatotheria ?(= Apatemyoidea)

                        +Apatemyidae (61.7-30.8 mya)

            +Arctostylopidae ? (58.7-48.6 mya)

            +Astigalidae ? (66.043-48.6 mya)

            +Anagalida (= Anagaloidea)

                        +Anagalidae (61.7-28.4 mya)

                        +Pseudictopidae (61.7-48.6 mya)

                        +Wania chowi ? (66.043-61.7 mya)

            Glires

                        Duplicidentata

                                    +Gomphos elkema (55.8-48.6 mya)

                                    Lagomorphamorpha (sensu Wyss & Meng 1996)

                                                +Mimotonida (= “Mixodontia” partim)

                                                            +Mimotonidae (66.043-37.2 mya)

                                                                        +Mimotona lii (66.043-61.7 mya)

                                                                        +Mina hui (61.7-58.7 mya)

                                                Eulagomorpha (sensu Lopatin & Averianov 2020)

                                                            +Dawsonolagus antiquus (55.8-48.6 mya)

                                                            +Arnebolagus leporinus (55.8-48.6 mya)

                                                            +Strenulagidae(55.8-33.9 mya)

                                                                        +Aktashmys montealbus (55.8-48.6 mya)

                                                            +Palaeolagidae (40.4-15.97 mya)

                                                            Lagomorpha (53-0 mya)

                                                                        Ochotonidae (28.4-0 mya)

                                                                        Leporidae (48.6-0 mya)

                                                                                    +Lushilagus (48.6-37.2 mya)

                        Simplicidentata (= Rodentiamorpha sensu Wyss & Meng 1996)

                                    +Sinomylus zhaii (58.7-55.8 mya)

                                    +Eurymyloidea (= “Mixodontia” partim) (61.7-48.6 mya)

                                                +Eurymylidae (61.7-48.6 mya)

                                                            +Heomys orientalis (61.7-58.7 mya)

                                                            +Eomylus (55.8-48.6 mya)

                                                +Decipomyidae (55.8-48.6 mya)

                                                +Rhombomylidae (58.7-55.8 mya)

                                    Rodentiaformes (sensu Wyss & Meng 1996)

                                                +Alagomyidae (55.8-48.6 mya)

                                                Rodentia

                                                            +Ischyromyidae (58.7-30.8 mya)

                                                                        +Acritoparamys atavus (56.8-55.8 mya)

                                                                        +Asiaparamys shevyrevae (58.7-55.8 mya)

                                                                        +Paramys adamus (56.8-55.8 mya)

                                                                        +Franimys (55.8-50.3 mya)

PaleoDB also lists these invalid families among Glires:

  • +Aspalacidae (48.6-40.4 mya) (belongs to the living rodent family Muridae according to McKenna & Bell 1997)
  • Ierboidae (2.588-0 mya) (an obsolete name for a group of living rodents)
  • Lagostomyidae (a synonym for the living rodent family Chinchillidae)
  • Ochtodontidae (an incorrect spelling of the living rodent family Octodontidae)

Concerning these datings it must be mentioned that there is some uncertainty concerning the geological layers in China that yielded some of the oldest fossils like Heomys and Mimotona (Li 1977). Benton et al. (2015) commented as follows:

The Wanghudun Formation, Qianshan Basin, China is of debated age. First, it was interpreted as belonging to the Paleocene Shanghuan Asian Land Mammal Age (Dashzeveg and Russell, 1988Li and Ting, 1993[sic]). However, Missiaen (2011) suggests that the Wanghudun Formation may be closer to the Nongshanian ALMA. We use this younger estimate for age of the Wanghudun Formation for two reasons: it is the more current interpretation, and it is younger, and so more conservative. The marine correlate of the Nongshanian ALMA is the Thanetian, with a minimum bound of 56 Ma ± 0.0 Myr = 56 Ma (Gradstein et al., 2012).

Wang et al. (2016) provided a synopsis of the Paleocene stratigraphy of the region. They agreed that the Wanghudun Formation correlates with the Nongshanian ALMA, which they date to a Middle Paleocene age correlative to a middle Tiffanian Ti1-4a NALMA (North American Land Mammal Age). According to Secord (2008) the Ti1-T4a interval dates to 61.57-58.85 mya, which agrees with the 61 mya estimate for Mimotona by López-Torres et al. (2020).

Glires

The most obvious synapomorphic characteristic of Glires is a pair of enlarged ever-growing incisors (Martin 1999Fostowicz-Frelik 2017). The first Glires appeared in the Early Paleocene of East Asia, close to the K/Pg boundary, shortly followed by the appearance of mimotonids and eurymyloids as first representatives of the lagomorph and rodent lineages respectively (Li & Ting 1985, 1993, Novacek 1986Wyss & Meng 1996Van Valen 2002Meng & Wyss 2005Janis et al. 2008Lacher et al. 2016Fostowicz-Frelik 20202022).

Previously, mimotonids, and eurymyloids where often together classified in a group called Mixodontia (Dashzeveg & Russell 1988Averianov 1994Lopatin 2003Lopez-Martinez 2008), but this group was mostly abandoned as non-monophyletic when cladistic classification became mainstream consensus, or it was redefined to only include the rodent-related eurymylids (Li & Yan 1979, Dashzeveg et al. 1998) as was originally proposed by Sych (1971) when he named Mixodontia.

Numerous earlier studies placed the African elephant shrews (Macroscelidea) with rodents and/or lagomorphs as well as the fossil anagalids in a clade called Anagalida (McKenna 1975Szalay 1977, Novacek 19861992Novacek & Wyss 1986McKenna & Bell 1997Meng & Wyss 2001, and Rose 2006). This was challenged by the results of modern molecular systematics and phylogenomics in the late 1990s, when the order Macroscelidea was transferred to a different supergroup called Afrotheria, which became the general consensus among the experts.

Nevertheless, the family Anagalidae, which comprises rabbit-like burrowing mammals known from Paleogene deposits of China and Mongolia (López-Torres & Fostowicz-Frelik 2018), are still considered as stem group representatives of Glires (Van Valen 2002Meng et al. 2003Meng 2004Rose 2006Janis et al. 2008; but see Fostowicz-Frelik 2017 and López-Torres & Fostowicz-Frelik 2018). Originally, Anagalidae was described and classified by Simpson (1931) among insectivores as relative of treeshrews and elephant shrews, which was still endorsed by Van Valen (1967). According to Nessov et al. (1998) the Anagalida also include Wania chowi from the earliest Paleocene of Anhui in China (Wang 1995), which dates right after the Chicxulub impact that killed off the non-avian dinosaurs and thus could represent the oldest fossil record of gliriforms. Unfortunately, this attribution was never supported by a proper phylogenetic study and dates to a time when Anagalida was used in an obsolete way for a non-monophyletic group. Therefore, Wang et al. (19982016) considered the ordinal affinity of Wania as indeterminate, so that we cannot use this taxon as a safe fossil dating for the age of Glires.

There are two other groups of Paleogene small insectivorous mammals that may belong to the stem group of Glires: One is the enigmatic order Apatotheria, which only includes the family Apatemyidae from the Paleocene-Oligocene of North America and Eurasia. Of this family we not only know the usual teeth and skull fragments but even completely preserved skeletons of Heterohyus from the famous Eocene Messel locality in Germany (Koenigswald 1987). They are characterized by a highly specialized dentition with a single hypertrophied lower incisor, which has been interpreted by Koenigswald (1987) as a adaptation similar to the niche of woodpeckers or the Malagasy Aye-aye lemur. Apatotherians disappeared with a mass extinction event at the Eocene-Oligocene transition (contra Kemp 2005) that is known under the French term “Grande Coupure” and was caused by an abrupt global cooling. In spite of the availability of complete skeletons there has been little agreement on apatemyid relationship (Gingerich & Rose 1982) and they have been mostly associated with primates or with insectivores, but also with rodents and even the extinct carnivore order Cimolesta (Rose 2006). However, the main modern study (Silcox et al. 2010) on the relationship of this group instead found reasonable support for a basal position in Euarchontoglires and weak support for a sister-group relationship with Glires. On the other hand, the cladistic study by Halliday et al. (2015) placed apatemyids as sister group to bats, thus in a different supergroup (Laurasiatheria).

The second group of possible stem Glires is another enigmatic family called Arctostylopidae from the Late Paleocene and Early Eocene of East Asia and North America, which is mainly known from their teeth. According to Halliday et al. (2015) “the relationships of Arctostylopidae are extremely poorly understood (Zack, 2004), but this group has been thought to be related to Glires, Notoungulata, or Artiodactyla”. Cifelli et al. (1989) considered them as possible relatives of lagomorphs. Rose (2006) still endorsed the notungulate affinity, but Missiaen et al. (20062012) showed that similarities with South American notungulates arose independently and instead found synapomorphies with gliriforms. They suggested that arctostylopids may be most closely related to the poorly known early Paleocene family Astigalidae, which was sometimes attributed to Anagalida. Halliday likewise found some support for a relationship with Glires.

Finally, we have to briefly discuss an extinct family called Zalambdalestidae (94.3-61.7 mya), which lived in the Late Cretaceous and Early Paleocene of Asia and had a locomotion similar to modern lagomorphs but teeth like insectivores. They have been associated with Glires, Anagalida, or at least Euarchontoglires by several studies (e.g., Van Valen 1964Szalay & McKenna 1971McKenna 1975, 1994, Szalay 1977Novacek & Wyss 1986McKenna & Bell 1997Dashzeveg et al. 1998Archibald et al. 2001Meng & Wyss 2001Fostowicz-Frelik & Kielan-Jaworowska 2002Averianov & Archibald 2005Kemp 2005Janis et al. 2008Fostowicz-Frelik 20162017López-Torres & Fostowicz-Frelik 2018). However, Meng (2004)found neither evidence for a relationship of zalambdalestids and Glires, nor for any close relatives of Glires in the Cretaceous. Rose (2006) tentatively still classified Zalambdalestidae in Anagalida with Glires, but mentioned that the phylogenetic position is uncertain and that they could rather be basal eutherians. More recent studies indeed placed Zalambdalestidaeoutside of crown group Eutheria (Wible et al. 20052007Halliday 2015Halliday et al. 2015Velazco et al. 2022), thus not even as genuine placental mammals. The main evidence for such a basal position is the presence of an epipubic bone, which is retained in monotremes and marsupials but reduced in all living placental mammals. Even Van Valen (2002) now doubted his earlier belief that zalambdalestids and Glires are related.

Lagomorphs

The total group that includes crown group Lagomorpha and their stem group like Mimotonidae (Li & Ting 1985, 1993, Averianov 1994Wyss & Meng 1996Van Valen 2002Rose 2006Dawson 2008) has been named Duplicidentata after the retained possession of two pairs of upper incisor teeth. Lagomorphs originated in the Paleocene of East Asia and later diversified in Asia and North America (Lopez-Martinez 2008Ge et al. 2013Lacher et al. 2016). The fossil record of lagomorphs includes 78 genera and 234 species from the Paleocene to the Pleistocene (Lopez-Martinez 2008). The most up-to-date phylogenetic tree and classification of fossil lagomorphs has been provided by Lopatin & Averianov (2020). The oldest fossil record of stem lagomorphs is the insectivorous genus Mimotona from the Paleocene of China (Li 1977Dashzeveg & Russell 1988), which belongs to the extinct clade Mimotonidae. Actually, Mimotona could represent the oldest known crown group placental mammal known at all (Halliday 2015). Second most ancient record is another mimotonid genus Gomphos from the Early to Middle Eocene of China and Mongolia (Meng et al. 200420052009Asher et al. 2005) with an estimated age of about 55 million years (AMNH 2006). Several studies (Meng & Wyss 2001Meng 2004Rose et al. 2008Lopatin & Averianov 2020) did not recover Gomphos in a clade with other Mimotonidae but placed it in an even more basal position as sister group to all other lagomorphs.

Dawsonolagus antiquus from the Early Eocene of Inner Mongolia in China has been suggested as transitional form between mimotonids and lagomorphs because of its mosaic combination of characters of both groups (Li et al. 2007). Therefore, Lopatin & Averianov (2020) suggested Eulagomorpha as name for clade that includes Dawsonolagus and crown group Lagomorpha. A possibly even somewhat more ancient eulagomorph is Arnebolagus leporinus from the Early Eocene (Bumbanian, 55.8-48.6 mya) Bumban Member of Naran Bulak Formation in Mongolia (Lopatin & Averianov 20082020). Of similar age is the earliest Strenulagidae Aktashmys montealbus from the terminal Early Eocene of Kyrgyzstan (Averianov & Lopatin 2005Lopatin & Averianov 2006).

The oldest fossil record of crown group Lagomorpha seems to be distinctive, small ankle bones from Early Eocene (ca. 53 mya) deposits of Gujarat in India (Rose et al. 2008). The fact that crown group and stem group lagomorphs appear together at about the same place and time is one of the many inconvenient facts of the fossil record that do not square well with a Darwinian narrative.

Rodents

The total group that includes crown group rodents and their stem group representatives such as Eurymyloidea has been named Simplicidentata after the possession of only a single pair of upper incisor teeth. Rodents first appeared in the Late Paleocene of East Asia but quickly spread to Europe and North America (Wilson 1951Dawson & Beard 1996Dawson 2003). The most basal stem group rodent seems to be Sinomylus, which has a single pair of incisors but uniquely retained the second upper premolar (McKenna & Meng 2001Rose 2006). However, some cladistic studies recovered Sinomylus as a sister group to Lagomorpha+Rodentia (Rose et al. 2008Asher et al. 20052019), while Lopatin (2003) suggested that Sinomylus belongs to Eurymyloidea and is closer related to Lagomorpha. Incongruence, anybody?

The extinct Eurymylidae from the Early Paleocene to Middle Eocene of East Asia include the most basal and oldest stem group representatives of rodents (Li & Ting 1985, 1993, Wyss & Meng 1996Van Valen 2002Rose 2006Rose et al. 2008). Some genera that are usually classified within Eurymylidae (McKenna & Bell 1997), and even in the subfamily Eurymylinae, have been suggested by some experts to be distinct enough to be better classified in the separate families Decipomyidae (Dashzeveg et al. 1998) and Rhombomylidae (Ting et al. 2002Huang et al. 2004). Of course, as always in phylogenetics there is considerable conflict in the results and some studies recovered eurymylids as stem lagomorphs rather than stem rodents even though with only weak support (e.g., Lopatin 2003Marivaux et al. 2004Asher et al. 2005). A total outlier is the cladistic study by Dashzeveg et al. (1998), who got Decipomyidae as sister group of Lagomorpha, Mimotonidae and Rhombomylidae as successive sister groups of Rodentia (incl. Alagomyidae), and the remaining eurymylids and Gomphos as stem Glires. There is also conflict in the views about the composition of Eurymylidae: Meng et al. (1994) and Wyss & Meng (1996) considered the genus Heomys as closer related to Alagomyidae+Rodentia then to Eurymylidae, while Asher et al. (2005) considered Heomys as member of a monophyletic Eurymylidae but that as closer related to Lagomorpha. Last but not least, Meng et al. (2003)Asher et al. (2019), and López-Torres et al. (2020) also found Heomys in monophyletic Eurymylidae, but the latter as closer related to Rodentia, in agreement with the majority of other experts. Should we have any confidence in this result, – you are not supposed to ask such heretical questions.

The extinct Alagomyidae have been found in Late Paleocene and Early Eocene deposits of North America and Asia (McKenna & Bell 1997Meng et al. 2007). They were often classified in Rodentia, because they share the typical single pair of incisors with rodents (Halliday et al. 2015). However, they seem to be advanced stem group representatives as sister group of Rodentia (Rodentiaformes) rather than crown group representatives (Meng et al. 1994Meng & Wyss 19942001Dawson & Beard 1996Van Valen 2002Dawson 2003Meng 2004Rose 2006Janis et al. 2008Fostowicz-Frelik 2020). Tribosphenomys from the Late Paleocene of China and Mongolia is particularly rodent-like (Meng et al. 1994Meng & Wyss 2001). Nevertheless, Meng et al. (2003) and López-Torres et al. (2020) has Tribosphenomysas more basal than Paramys in the stem group of rodents, unlike most other studies. Finally, at least one study (Marivaux et al. 2004) did not support the monophyly of Alagomyidae, but had Alagomys more closely related to rodents than Tribosphenomys. Disagreement and incongruence everywhere you look!

The earliest fossil record of crown group rodents could be the family Ischyromyidae (= Paramyidae) from Late Paleocene to Early Oligocene deposits of North America and Eurasia (Matthew 1910Jepsen 1937Anderson 2008). They may be closer related to the squirrel group of rodents (Simpson 1945Van Valen 2002Janis et al. 2008Kay & Hoekstra 2008Asher et al. 2019), even though other workers rather considered them as stem rodents (e.g., Fostowicz-Frelik 2020). The earliest fossils of ischyromyids are species like Asiaparamys shevyrevae from the Latest Paleocene of Kazakhstan (Nessov 1987, Averianov & Martin 2001) as well as Acritoparamys atavusParamys adamus, and Franimys sp. from the Latest Paleocene of north-western USA (Wood 1962, Carroll 1988, Dawson & Beard 1996Anderson 2008Beard & Dawson 2009). Genera like Paramys (Matthew 1910Jepsen 1937Wood 1962) and Ischyromys were arboreal mouse-like animals, while other ischyromyid genera like Manitsha were terrestrial and 1.5 times larger than a beaver.

More or less contemporaneous with stem rodents there is also the first record of crown group rodents from the Ctenodactyloidea such as the genus Tamquammys from the earliest Eocene (ca. 56 mya) Erlian Basin of Nei Mongol in China (Fostowicz-Frelik et al. 2018).The ctenodactyloids are a primitive group of living rodents that includes gundis and the Laotian rock rat, a living fossil (Biello 2006).

The Issue of Incongruence

There is a final curious fact about rodents that must be mentioned because it perfectly illustrates the important issue of incongruence between morphological and molecular/genetic data that is unexpected under Darwinism: early molecular data were interpreted as evidence that rodents are not monophyletic (Graur et al. 19911992Li et al. 1992; also see D’Erchia et al. 1996), which was extremely surprising as no morphologist ever doubted the monophyly of rodents. Molecular biologist Dan Graur, who is well known to ID proponents as “The Vigilante Who Wants to Retain the Myth of Junk DNA,” mentioned his weird idea that guinea pigs are not rodents at a public lecture at my university in Tübingen, Germany, when I was still a student. I vividly remember how we systematic biologists, educated in the great German tradition of classic comparative morphology, had nothing but ridicule and scorn for such nonsensical results of early molecular phylogenetics. It was not just that those guys suggested that rodents are diphyletic, but ideas about the diphyly of well-established groups became a kind of popular fad for molecular biologists: for example, they also suggested that well-defined groups such as bats and whales are diphyletic, and more recently that the insectivorous Eulipotyphla are diphyletic (Kjer & Honeycutt 2007) which we will discuss next in this article series. 

It goes without saying that none of these ideas stood the test of time (Hasegawa et al. 1992Novacek 1992Honeycutt & Adkins 1993Luckett & Hartenberger 1993Sullivan & Swofford 1997Janis et al. 2008Zhou et al. 2015). Other apparently crazy ideas suggested by molecular systematics, such as the non-monophyly of taxa like Articulata (annelids and arthropods) and Tracheata (myriapods and insects), indeed became the new orthodoxy, even though there is still some courageous resistance from the “indomitable village” of classical morphologists (e.g., Scholtz 2002Wägele & Kück 2014). The same holds for the reverse case, where the traditional view, based on anatomical and fossil evidence, that pinnipeds are diphyletic (walruses and sea lions derived from a bear-like ancestor, and true seals derived from mustelids), was overturned by molecular studies (Koretsky et al. 2016Hafed et al. 2020). Even though there obviously is rampant conflict between molecular and anatomical data, and between molecular clock datings and the actual fossil record, which even led scientists to question the “adequacy of morphology for reconstructing the early history of placental mammals” (Springer et al. 2007a), few scientists are courageous enough to conclude from such conflicting evidence that we may have to question the Darwinian framework of evolutionary biology. To be clear: this does not mean that common descent is refuted. Rather it means that the evidence strongly suggests that a blind and random process is no causally adequate and sufficient explanation for the diversity and complexity of life.

Anyway, we can conclude from the above discussion of the fossil record of Glires that the earliest stem Glires as well as stem lagomorphs and stem rodents already appeared about 61 million years ago in Early Paleocene of East Asia. Based on Benton et al. (2015) the Fossil Calibration Database took a bit more conservative approach and dates the minimum age of Glires to 56 million years, based on the phylogenetic assignment (Meng et al. 2003Asher et al. 2005) and younger Thanetian dating (see above) of the genera Mimotona and Heomys.

Since we have now completed our review of the supergroups (cohorts) Xenarthra, Afrotheria, and Euarchontoglires, we will move on to the final of the supergroups of placental mammals, which has been named Laurasiatheria. We will start with insectivores (Eulipotyphla) as its most basal order, but this will be in March, because due to deadlines for the rest of this month Fossil Friday will only feature photos of some nice fossil dragonflies.

References

  • AMNH 2006. Earliest Rabbit Fossil Found, Suggests Modern Mammal Group Emerged As Dinosaurs Faced Extinction. AMNH.org website February 5, 2006. https://www.amnh.org/research/science-news/2006/earliest-rabbit-fossil-found-suggests-modern-mammal-group-emerged-as-dinosaurs-faced-extinction
  • Anderson D 2008. Ischyromyidae. Chapter 18, pp. 311–325 in: Janis CM, Gunnell GF & Uhen MD (eds). Evolution of Tertiary Mammals of North America. Cambridge University Press, Cambridge (UK), viii+795 pp. DOI: https://doi.org/10.1017/CBO9780511541438.019
  • Archibald JD, Averianov AO & Ekdale EG 2001. Late Cretaceous relatives of rabbits, rodents, and other extant eutherian mammals. Nature 414(6859), 62–65. DOI: https://doi.org/10.1038/35102048
  • Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB, Gullberg A, Nilsson M, Short RV, Xu X & Janke A 2002. Mammalian mitogenomic relationships and the root of the eutherian tree. PNAS 99(12), 8151–8156. DOI: https://doi.org/10.1073/pnas.102164299
  • Asher RJ, Meng J, Wible JR, McKenna MC, Rougier GW, Dashzeveg D & Novacek MJ 2005. Stem Lagomorpha and the Antiquity of Glires. Science 307(5712), 1091–1094. DOI: https://doi.org/10.1126/science.1107808
  • Asher RJ, Smith MR, Rankin A & Emry RJ 2019. Congruence, fossils and the evolutionary tree of rodents and lagomorphs. Royal Society Open Science 6(7):190387, 1–13. DOI: https://doi.org/10.1098/rsos.190387
  • Averianov AO 1994. Early Eocene mimotonids of Kyrgyzstan and the problem of Mixodontia. Acta Paleontologica Polonica 39(4), 393–411. https://www.app.pan.pl/article/item/app39-393.html
  • Averianov A & Archibald JD 2005. Mammals from the mid-Cretaceous Khodzhakul Formation, Kyzylkum Desert, Uzbekistan. Cretaceous Research 26(4), 593–608. DOI: https://doi.org/10.1016/j.cretres.2005.03.007
  • Averianov AO & Lopatin AV 2005. Eocene Lagomorphs (Mammalia) of Asia: 1. Aktashmys(Strenulagidae fam. nov.). Paleontological Journal 39(3), 308–317. https://www.researchgate.net/publication/297837680
  • Averianov A & Martin T 2001. Rodents from the early Paleogene Dzhylga localities in southern Kazakhstan. Neues Jahrbuch für Geologie und Paläontologie – Monatshefte2001(8), 483–499. DOI: https://doi.org/10.1127/njgpm/2001/2001/483
  • Beard KC & Dawson MR 2009. Early Wasatchian mammals of the Red Hot local fauna, uppermost Tuscahoma Formation, Lauderdale County, Mississippi. Annals of Carnegie Museum 78(3), 193–243. DOI: https://doi.org/10.2992/007.078.0301
  • Benton MJ, Donoghue PCJ, Asher RA, Friedman M, Near TJ & Vinther J 2015. Constraints on the timescale of animal evolutionary history. Palaeontologia Electronica 18.1.1FC, 1–107. DOI: https://doi.org/10.26879/424
  • Biello D 2006. Laotian Rodent Proves Living Fossil. Scientific American March 10, 2006. https://www.scientificamerican.com/article/laotian-rodent-proves-liv/
  • Carroll RL 1988. Vertebrate Paleontology and Evolution. WH Freeman & Co, New York (NY), xiv+698 pp.
  • Cifelli RL, Schaff CR & McKenna MC 1989. The relationships of the Arctostylopidae (Mammalia): New data and interpretation. Bulletin of the Museum of Comparative Zoology152, 1–44. https://biostor.org/reference/623
  • Cox PG & Hautier L (eds) 2015. Evolution of the Rodents: Advances in Phylogeny, Functional Morphology and Development. Cambridge University Press, Cambridge (UK), xiv+611 pp. DOI: https://doi.org/10.1017/CBO9781107360150
  • Dashzeveg D & Russell DE 1988. Palaeocene and Eocene Mixodontia (Mammalia, Glires) of Mongolia and China. Palaeontology 31(1), 129–164. https://biostor.org/reference/165795
  • Dashzeveg D, Hartenberger J-L, Martin T & Legendre S 1998. A peculiar minute Glires (Mammalia) from the early Eocene of Mongolia. Bulletin of Carnegie Museum of Natural History 34, 194–209. https://www.researchgate.net/publication/233924881
  • Dawson MR 2003. Paleogene rodents of Eurasia. Deinsea 10(1), 97–126. https://natuurtijdschriften.nl/pub/538709
  • Dawson MR 2008. Lagomorpha. Chapter 17, pp. 293–310 in: Janis CM, Gunnell GF & Uhen MD (eds). Evolution of Tertiary Mammals of North America. Cambridge University Press, Cambridge (UK), viii+795 pp. DOI: https://doi.org/10.1017/CBO9780511541438.018
  • Dawson MR & Beard KC 1996. New Late Paleocene Rodents (Mammalia) from Big Multi Quarry, Washakie Basin, Wyoming. Palaeovertebrata 25(2-4), 301–321. https://palaeovertebrata.com/Articles/sendFile/207/published_article
  • D’Erchia AM, Gissi C, Pesole G, Saccone C & Arnason U 1996. The guinea-pig is not a rodent. Nature 381(6583), 597–600. DOI: https://doi.org/10.1038/381597a0
  • Douzery EJP & Huchon D 2004. Rabbits, if anything, are likely Glires. Molecular Phylogenetics and Evolution 33(3), 922–935. DOI: https://doi.org/10.1016/j.ympev.2004.07.014
  • Douzery EJP, Delsuc F, Stanhope MJ & Huchon D 2003. Local Molecular Clocks in Three Nuclear Genes: Divergence Times for Rodents and Other Mammals and Incompatibility Among Fossil Calibrations. Journal of Molecular Evolution 57(S1), S201–S213. DOI: https://doi.org/10.1007/s00239-003-0028-x
  • Foley NM, Springer MS & Teeling EC 2016. Mammal madness: Is the mammal tree of life not yet resolved? Philosophical Transactions of the Royal Society B 371(1699):20150140, 1–11. DOI: https://doi.org/10.1098/rstb.2015.0140
  • Fostowicz-Frelik Ł 2016. A new zalambdalestid (Eutheria) from the Late Cretaceous of Mongolia and its implications for the origin of Glires. Palaeontologia Polonica 67, 127–136. http://www.palaeontologia.pan.pl/PP67/Fostowicz.pdf
  • Fostowicz-Frelik Ł 2017. Convergent and Parallel Evolution in Early Glires (Mammalia). pp. 199–216 in: Pontarotti P (ed.). Evolutionary Biology: Self/Nonself Evolution, Species and Complex Traits Evolution, Methods and Concepts.Springer, Cham (CH), x+396 pp. DOI: https://doi.org/10.1007/978-3-319-61569-1_11
  • Fostowicz-Frelik Ł 2020. Most Successful Mammals in the Making: A Review of the Paleocene Glires. pp. 99–116 in: Pontarotti P (eds). Evolutionary Biology—A Transdisciplinary Approach. Springer, Cham (CH), viii+391 pp. DOI: https://doi.org/10.1007/978-3-030-57246-4_5
  • Fostowicz-Frelik Ł 2022. Look at those feet! Early evolution of rodents and lagomorphs. Research Outreach February 2, 2022 / RO128, 1–4. DOI: https://doi.org/10.32907/RO-128-2242042759
  • Fostowicz-Frelik L & Kielan-Jaworowska Z 2002. Lower incisor in zalambdolestid mammals (Eutheria) and its phylogenetic implications. Acta Palaeontologica Polonica 47(1), 177–180. https://www.app.pan.pl/article/item/app47-177.html
  • Fostowicz-Frelik Ł, Li Q & Ni X 2018. Oldest ctenodactyloid tarsals from the Eocene of China and evolution of locomotor adaptations in early rodents. BMC Evolutionary Biology18:150, 1–13. DOI: https://doi.org/10.1186/s12862-018-1259-1
  • Ge D, Wen Z, Xia L, Zhang Z, Erbajeva M, Huang C & Yang Q 2013. Evolutionary History of Lagomorphs in Response to Global Environmental Change. PLoS ONE 8(4):e59668, 1–15. DOI: https://doi.org/10.1371/journal.pone.0059668
  • Gidley JW 1912. The Lagomorphs As an Independent Order. Science 36(922), 285–286. DOI: https://doi.org/10.1126/science.36.922.285
  • Gingerich PD & Rose KD 1982. Studies on Paleocene and Early Eocene Apatemyidae (Mammalia, Insectivora): I Dentition of Clarkforkian Labidolemur kayi. II. Labidolemur and Apatemys from the Early Wasatchian of the Clark’s Fork Basin, Wyoming. Contributions from the Museum of Paleontology, The University of Michigan 26(4), 49–69. https://hdl.handle.net/2027.42/48512
  • Gradstein FM, Ogg JG, Schmitz M & Ogg G 2012. The Geologic Time Scale 2012. Elsevier, Amsterdam (NL), 1176 pp.
  • Graur D, Hide WA & Li W-H 1991. Is the guinea-pig a rodent? Nature 315(6328), 649–652. DOI: https://doi.org/10.1038/351649a0
  • Graur D, Hide WA, Zharkikh A & Li W-H 1992. The Biochemical Phylogeny of Guinea-Pigs and Gundis, and the Paraphyly of the Order Rodentia. Comparative Biochemistry Physiology B 101(4), 495–498. DOI: https://doi.org/10.1016/0305-0491(92)90327-N
  • Graur D, Duret L & Gouy M 1996. Phylogenetic position of the order Lagomorpha (rabbits, hares and allies). Nature 379(6563), 333–335. DOI: https://doi.org/10.1038/379333a0
  • Gupta RS & Suggett C 2022. Conserved Signatures in Protein Sequences Reliably Demarcate Different Clades of Rodents/Glires Species and Consolidate Their Evolutionary Relationships. Genes 13(2):288, 1–23. DOI: https://doi.org/10.3390/genes13020288
  • Hafed AB, Koretsky IA & Rahmat SJ 2020. Current status of pinnipeds phylogeny based on molecular and morphological data. Historical Biology 33(10), 2356–2370. DOI: https://doi.org/10.1080/08912963.2020.1795649
  • Halliday TJD 2015. The enigmatic evolutionary relationships of Palaeocene mammals and their relevance for the Tertiary radiation of placental mammals. PhD Thesis, UCL, 229 pp. https://discovery.ucl.ac.uk/id/eprint/1469745/
  • Halliday TJD, Upchurch P & Goswami A 2015. Resolving the relationships of Paleocene placental mammals. Biological Reviews 92(1), 521–550. DOI: https://doi.org/10.1111/brv.12242
  • Hasegawa M, Cao Y, Adachi J & Yano T-A 1992. Rodent Polyphyly? Nature 355(6361), 595. DOI: https://doi.org/10.1038/355595a0
  • Honeycutt RL & Adkins RM 1993. Higher Level Systematics of Eutherian Mammals: An Assessment of Molecular Characters and Phylogenetic Hypotheses. Annual Review of Ecology and Systematics 24(1), 279–305. DOI: https://doi.org/10.1146/annurev.es.24.110193.001431
  • Horner DS, Lefkimmiatis K, Reyes A, Gissi C, Saccone C & Pesole G 2007. Phylogenetic analyses of complete mitochondrial genome sequences suggest a basal divergence of the enigmatic rodent AnomalurusBMC Evolutionary Biology 7(1):16, 1–12. DOI: https://doi.org/10.1186/1471-2148-7-16
  • Huang X, Li C, Dawson MR & Liu L 2004. Hanomys malcolmi, a new simplicidentate mammal from the Paleocene of central China: its relationships and stratigraphic implications. Bulletin of Carnegie Museum of Natural History 36(1), 81–89. DOI: https://doi.org/10.2992/0145-9058(2004)36[81:HMANSM]2.0.CO;2
  • Huchon D, Madsen O, Sibbald MJJB, Aments K, Stanhope MJ, Catzeflis F, de Jong WW & Douzery EJP 2002. Rodent Phylogeny and a Timescale for the Evolution of Glires: Evidence from an Extensive Taxon Sampling Using Three Nuclear Genes. Molecular Biology and Evolution 19(7), 1053–1065. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a004164
  • Janečka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, Springer MS & Murphy WJ 2007. Molecular and genomic data identify the closest living relative of primates. Science 318(5851), 792–794. DOI: https://doi.org/10.1126/science.1147555
  • Janis CM, Dawson MR & Flynn LJ 2008. Glires summary. Chapter 16, pp. 263–292 in: Janis CM, Gunnell GF & Uhen MD (eds). Evolution of Tertiary Mammals of North America. Cambridge University Press, Cambridge (UK), viii+795 pp. DOI: https://doi.org/10.1017/CBO9780511541438.017
  • Jepsen GL 1937. A Paleocene Rodent, Paramys AtavusProceedings of the American Philosophical Society 78(2), 291–301. https://www.jstor.org/stable/984538
  • Kay EH & Hoekstra HE 2008. Rodents. Current Biology 18(10), R406–R410. DOI: https://doi.org/10.1016/j.cub.2008.03.019
  • Kemp TS 2005. The Origin and Evolution of Mammals. Oxford University Press, Oxford (UK), 331 pp. [Google Books]
  • Kjer KM, Honeycutt RL 2007. Site specific rates of mitochondrial genomes and the phylogeny of eutheria. BMC Evolutionary Biology 7(1):8, 1–9. DOI: https://doi.org/10.1186/1471-2148-7-8
  • Koenigswald Wv 1987. Apatemyiden-Skelette aus dem Mitteleozän von Messel und ihre paläobiologische Aussage. Carolinea 45, 31–35 https://www.zobodat.at/pdf/Carolinea_45_0031-0035.pdf
  • Koretsky IA, Barnes LG & Rahmat SJ 2016. Re-Evaluation of Morphological Characters Questions Current Views of Pinniped Origins. Vestnik zoologii 50(4), 327–354. DOI: https://doi.org/10.1515/vzoo-2016-0040 (DOI link broken) https://www.researchgate.net/publication/309618340
  • Kumar S & Hedges SB 1998. A molecular timescale for vertebrate evolution. Nature392(6679), 917–920. DOI: https://doi.org/10.1038/31927
  • Lacher T, Murphy WJ, Rogan JE, Smith AT & Upham NS 2016. Evolution, phylogeny, ecology and conservation of the Clade Glires: Lagomorpha and Rodentia. pp. 15–26 in: Wilson DE, Lacher TE & Mittermeier RA (eds). Handbook of the Mammals of the World: Volume 6. Lagomorphs and Rodents I. Lynx Edicions, Barcelona (ES), 987 pp. https://www.researchgate.net/publication/318430003
  • Li C 1977. Paleocene eurymyloids (Anagalida, Mammalia) of Qianshan Anhui. Vertebrata PalAsiatica 15, 103–118 [In Chinese and English]. http://www.ivpp.cas.cn/cbw/gjzdwxb/xbwzxz/200905/P020110302582190184906.pdf
  • Li C-K & Ting S 1983. The Paleogene mammals of China. Bulletin Carnegie Museum 21, 1–98. DOI: https://doi.org/10.5962/p.228600
  • Li C-K & Ting S-Y 1985. Possible phylogenetic relationship of Asiatic eurymylids and rodents, with comments on mimotonids. pp. 35-58 in: Luckett WP & Hartenberger J-L (eds). Evolutionary Relationships among Rodents: A Multidisciplinary Analysis. Springer, New York (NY), xiii+721 pp. DOI: https://doi.org/10.1007/978-1-4899-0539-0_2
  • Li C-K & Ting S-Y 1993. New cranial and postcranial evidence for the affinities of the eurymylids (Rodentia) and mimotonids (Lagomorpha). pp. 151–158 in: Szalay FS, Novacek MJ & McKenna MC (eds). Mammal phylogeny: Placentals. Springer, New York (NY), 332 pp.
  • Li C-K & Yan D-F 1979. [Notes on the systematic position of eurymyloids (Mammalia) and the origin of Rodentia]. 12th Annual Conference and 3rd National Congress Paleontological Society of China, Beijing. Abstracts of Papers, 155–156 [In Chinese].
  • Li WH, Gouy M, Sharp PM, O’hUigin C, & Yang YW 1990. Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. PNAS87(17), 6703–6707. DOI: https://doi.org/10.1073/pnas.87.17.6703
  • Li W-H, Hide WA & Graur D 1992. Origin of Rodents and Guinea-Pigs. Nature 359(6393), 277–278. DOI: https://doi.org/10.1038/359277b0
  • Li C, Meng J & Wang Y 2007. Dawsonolagus antiquus, A Primitive Lagomorph from the Eocene Arshanto Formation, Nei Mongol, China. Bulletin of Carnegie Museum of Natural History 39, 97–110. DOI: https://doi.org/10.2992/0145-9058(2007)39[97:daaplf]2.0.co;2
  • Linnaei C 1735. Systema naturæ, sive regna tria naturæ systematice proposita per classes, ordines, genera, & species. Johann Wilhelm de Groot, Leiden, 14 pp.
  • Lopatin AV 2003. The skull structure of Sinomylus (Mixodontia). Journal of Vertebrate Paleontology 23(S3), 72A–73A. https://www.researchgate.net/publication/344539453
  • Lopatin AV & Averianov AO 2006, Eocene Lagomorpha (Mammalia) of Asia, 2, Strenulagusand Gobiolagus (Strenulagidae). Paleontological Journal 40, 198–206. DOI: https://doi.org/10.1134/S0031030106020110
  • Lopatin AV & Averianov AO 2008. The earliest lagomorph (Lagomorpha, Mammalia) from the basal Eocene of Mongolia. Doklady Biological Sciences 419, 131–132. DOI: https://doi.org/10.1134/s001249660802018x
  • Lopatin AV & Averianov AO 2020. Arnebolagus, the oldest eulagomorph, and phylogenetic relationships within the Eocene Eulagomorpha new clade (Mammalia, Duplicidentata). Journal of Paleontology 95(2), 394–405. DOI: https://doi.org/10.1017/jpa.2020.94
  • Lopez-Martinez N 2008. The Lagomorph Fossil Record and the Origin of the European Rabbit. pp. 27–46 in: Alves PC, Ferrand N & Hackländer K (eds). Lagomorph Biology: Evolution, Ecology, and Conservation. Springer, Berlin (DE), xviii+414 pp. DOI: https://doi.org/10.1007/978-3-540-72446-9_3
  • López-Torres S & Fostowicz-Frelik Ł 2018. A new Eocene anagalid (Mammalia: Euarchontoglires) from Mongolia and its implications for the group’s phylogeny and dispersal. Scientific Reports 8:13955, 1–9. DOI: https://doi.org/10.1038/s41598-018-32086-x
  • López-Torres, S., Bertrand, O. C., Lang, M. M., Silcox, M. T., & Fostowicz-Frelik, Ł. (2020). Cranial endocast of the stem lagomorph Megalagus and brain structure of basal Euarchontoglires. Proceedings of the Royal Society B 287(1929):20200665, 1–9. DOI: https://doi.org/10.1098/rspb.2020.0665
  • Luckett WP & Hartenberger JL 1993. Monophyly or polyphyly of the order Rodentia: Possible conflict between morphological and molecular interpretations. Journal of Mammalian Evolution 1(2), 127–147. DOI: https://doi.org/10.1007/BF01041591
  • Marivaux L, Vianey-Liaud M & Jaeger J-J 2004. High-level phylogeny of early Tertiary rodents: dental evidence. Zoological Journal of the Linnean Society 142(1), 105–134. DOI: https://doi.org/10.1111/j.1096-3642.2004.00131.x
  • Martin T 1999. Phylogenetic Implications of Glires (Eurymylidae, Mimotonidae, Rodentia, Lagomorpha) Incisor Enamel Microstructure. Mitteilungen des Museum für Naturkunde Berlin, Zoologische Reihe 75(2), 257–273. DOI: https://doi.org/10.1002/mmnz.19990750207
  • Matthew WD 1910. On the osteology and relationships of Paramys and the affinities of the Ischyromyidae. Bulletin of the American Museum of Natural History 28, 43–72. http://hdl.handle.net/2246/1391
  • McKenna MC 1975. Toward a Phylogenetic Classification of the Mammalia. pp. 21–46 in: Luckett WP & Szalay FS (eds.). Phylogeny of the primates: a multidisciplinary approach. Proceedings of WennerGren Symposium no. 61, Burg Wartenstein, Austria, July 6–14, 1974. Plenum Press, New York (NY). DOI: https://doi.org/10.1007/978-1-4684-2166-8_2
  • McKenna MC 1994. Early relatives of Flopsy, Mopsy, and Cottontail. Natural History 103, 56–58.
  • McKenna MC & Bell SK 1997. Classification of Mammals Above the Species Level. Colombia University Press, New York (NY), xii+631 pp. https://books.google.at/books?id=zS7FZkzIw-cC
  • McKenna MC & Meng J 2001. A Primitive Relative of Rodents from the Chinese Paleocene. Journal of Vertebrate Paleontology 21(3), 565–572. https://www.jstor.org/stable/20061985
  • Meng J 2004. Chapter 7: Phylogeny and Divergence of Basal Glires. Bulletin of the American Museum of Natural History 285, 93–109. DOI: https://doi.org/10.1206/0003-0090(2004)285<0093:C>2.0.CO;2
  • Meng J & Wyss AR 1994. Enamel microstructure of Tribosphenomys (Mammalia, Glires): Character analysis and systematic implications. Journal of Mammalian Evolution 2(3), 185–203. DOI: https://doi.org/10.1007/BF01473528
  • Meng J & Wyss AR 2001. The morphology of Tribosphenomys (Rodentiaformes, Mammalia): phylogenetic implications for basal Glires. Journal of Mammalian Evolution8(1), 1–71. DOI: https://doi.org/10.1023/A:1011328616715
  • Meng J & Wyss AR 2005. Glires (Lagomorpha, Rodentia). Chapter 10, pp. 145–158 in: Rose KD & Archibald JD (eds). The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades. Johns Hopkins University Press, Baltimore (MD), 280 pp. https://books.google.at/books?id=DhchVG_rbQ8C
  • Meng J, Wyss AR, Dawson MR & Zhai R 1994. Primitive fossil rodent from Inner Mongolia and its implications for mammalian phylogeny. Nature 370, 134–136. DOI: https://doi.org/10.1038/370134a0
  • Meng J, Hu Y & Li C 2003. The osteology of Rhombomylus (Mammalia, Glires): Implications for phylogeny and evolution of Glires. Bulletin of the American Museum of Natural History 275, 1–247. http://hdl.handle.net/2246/442
  • Meng J, Bowen GJ, Jie Y, Koch PL, Ting S, Qian L & Jin X 2004. Gomphos elkema (Glires, Mammalia) from the Erlian Basin: evidence for the early Tertiary Bumbanian land mammal age in Nei-Mongol, China. American Museum Novitates 3425, 1-24. http://hdl.handle.net/2246/2790
  • Meng J, Wyss AR, Hu Y, Wang Y, Bowen GJ & Koch PL 2005. Glires (Mammalia) from the Late Paleocene Bayan Ulan Locality of Inner Mongolia. American Museum Novitates 3473, 1–25. DOI: https://doi.org/10.1206/0003-0082(2005)473[0001:gmftlp]2.0.co;2
  • Meng J, Ni X, Li C, Beard KC, Gebo DL, Wang Y & Wang H 2007. New material of Alagomyidae (Mammalia, Glires) from the Late Paleocene Subeng locality, Inner Mongolia. American Museum Novitates 3597(1), 1–29. DOI: https://doi.org/10.1206/0003-0082(2007)3597[1:NMOAMG]2.0.CO;2
  • Meng J, Kraatz BP, Wang Y, Ni X, Gebo DL & Beard KC 2009. A new species of Gomphos(Glires, Mammalia) from the Eocene of the Erlian Basin, Nei Mongol, China. American Museum Novitates 3670, 1–11. http://hdl.handle.net/2246/6029
  • Meredith RW, Janečka JE, Gatesy J et al. 2011. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334(6055), 521–524. DOI: https://doi.org/10.1126/science.1211028
  • Misawa K & Janke A 2003. Revisiting the Glires concept–phylogenetic analysis of nuclear sequences. Molecular Phylogenetics and Evolution 28(2), 320–327. DOI: https://doi.org/10.1016/S1055-7903(03)00079-4
  • Missiaen P 2011. An updated mammalian biochronology and biogeography for the early Paleogene of Asia. Vertebrata PalAsiatica 49(1), 29–52. http://www.vertpala.ac.cn/EN/Y2011/V49/I1/29
  • Missiaen P, Smith T, Guo D-Y, Bloch JI & Gingerich PD 2006. Asian gliriform origin for arctostylopid mammals. Naturwissenschaften 93(8), 407–411. DOI: https://doi.org/10.1007/s00114-006-0122-1
  • Missiaen P, Escarguel G, Hartenberger J-L & Smith T 2012. A large new collection of Palaeostylops from the Paleocene of the Flaming Cliffs area (Ulan-Nur Basin, Gobi Desert, Mongolia), and an evaluation of the phylogenetic affinities of Arctostylopidae (Mammalia, Gliriformes). Geobios 45(3), 311–322. DOI: https://doi.org/10.1016/j.geobios.2011.10.004
  • Nessov LA 1987. Rezultaty poiskov i issledovaniya Melovykh i Rannepaleogenovykh mlekopitayushikh na territorii SSSR [Results of searches and investigations of Cretaceous and early Paleogene mammals in the territory of the USSR]. Ezhegodnik Vzezoyuznaya Paleontologicheskiy Obshchevstvo 30, 199–218.
  • Nessov LA, Archibald JD & Kielan-Jaworowska Z 1998. Ungulate-like mammals from the Late Cretaceous of Uzbekistan and a phylogenetic analysis of Ungulatomorpha. Bulletin of Carnegie Museum of Natural History 34, 40–88.
  • Novacek MJ 1986. The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bulletin of the American Museum of Natural History 183, 1–111.http://hdl.handle.net/2246/1628
  • Novacek MJ 1992. Mammalian phylogeny: shaking the tree. Nature 356(6365), 121–125. DOI: https://doi.org/10.1038/356121a0
  • Novacek MJ & Wyss AR 1986. Higher-level relationships of recent eutherian orders: morphological evidence. Cladistics 2(4), 257–287. DOI: https://doi.org/10.1111/j.1096-0031.1986.tb00463.x
  • O’Leary MA, Bloch JI, Flynn JJ et al. 2013. The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals. Science 339 (6120), 662–667. DOI: https://doi.org/10.1126/science.1229237
  • Phillips MJ & Fruciano C 2018. The soft explosive model of placental mammal evolution. BMC Evolutionary Biology 18:104, 1–13. DOI: https://doi.org/10.1186/s12862-018-1218-x
  • Rose KD 2006. Anagalida: Rodents, Lagomorphs, and Their Relatives. pp. 306–334 in: The Beginning of the Age of Mammals. John Hopkins University Press, Baltimore (MA), xiv+428 pp. https://books.google.at/books?id=3bs0D5ix4VAC
  • Rose KD, DeLeon VB, Missiaen P, Rana RS, Sahni A, Singh L & Smith T 2008. Early Eocene lagomorph (Mammalia) from Western India and the early diversification of Lagomorpha. Proceedings of the Royal Society B 275(1639), 1203–1208. DOI: https://doi.org/10.1098/rspb.2007.1661
  • Scholtz G 2002. The Articulata hypothesis – or what is a segment? Organisms Diversity & Evolution 2(3), 197–215. DOI: https://doi.org/10.1078/1439-6092-00046
  • Secord R 2008. The Tiffanian Land-Mammal Age (Middle and Late Paleocene) in the Northern Bighorn Basin, Wyoming. Papers on Paleontology 35. Museum of Paleontology, The University of Michigan, Ann Arbor (MI), xi+192 pp. https://www.researchgate.net/publication/30862012
  • Silcox MT, Bloch JI, Boyer DM & Houde P 2010. Cranial anatomy of Paleocene and Eocene Labidolemur kayi (Mammalia: Apatotheria), and the relationships of the Apatemyidae to other mammals. Zoological Journal of the Linnean Society 160(4), 773–825. DOI: https://doi.org/10.1111/j.1096-3642.2009.00614.x
  • Simpson GG 1931. A new insectivore from the Oligocene, Ulan Gochu horizon, of Mongolia. American Museum Novitates 505, 1–22. http://hdl.handle.net/2246/2983
  • Simpson GG 1945. The Principles of Classification and a Classification of the Mammals. Bulletin American Museum of Natural History 85, ix+350 pp. http://hdl.handle.net/2246/1104
  • Springer MS, Murphy WJ, Eizirik E & O’Brien SJ 2003. Placental mammal diversification and the Cretaceous–Tertiary boundary. PNAS 100(3), 1056–1061. DOI: https://doi.org/10.1073/pnas.0334222100
  • Springer MS, Burk-Herrick A, Meredith R, Eizirik E, Teeling E, O’Brien SJ & Murphy WJ 2007a. The Adequacy of Morphology for Reconstructing the Early History of Placental Mammals. Systematic Biology 56(4), 673-684. https://www.jstor.org/stable/20143073
  • Springer MS, Murphy WJ, Eizirik E, Madsen O, Scally M, Douady CJ, Teeling EC, Stanhope MJ, de Jong WW & O’Brien SJ 2007b. A molecular classification for the living orders of placental mammals of the phylogenetic placement of primates. Chapter 1, pp. 1–28 in: Ravosa MJ & Dagosto M (eds). Primate Origins: Adaptations and Evolution. Springer, New York (NY), xxx+829 pp. DOI: https://doi.org/10.1007/978-0-387-33507-0_1
  • Suárez R, Fernández-Aburto P, Manger PR & Mpodozis J 2011. Deterioration of the Gαo Vomeronasal Pathway in Sexually Dimorphic Mammals. PLoS ONE 6(10):e26436, 1–6. DOI: https://doi.org/10.1371/journal.pone.0026436
  • Sullivan J & Swofford DL 1997. Are guinea pigs rodents? The importance of adequate models in molecular phylogenetics. Journal of Mammalian Evoution 4(2), 77–86. DOI: https://doi.org/10.1023/A:1027314112438
  • Sych L 1971. Mixodontia, a new order of mammals from the Paleocene of Mongolia. Palaeontologia Polonica 25, 147–158. http://www.palaeontologia.pan.pl/Archive/1971_25_147_158_25_28.pdf
  • Szalay FS 1977. Phylogenetic relationships and a classification of the eutherian Mammalia. pp. 315-374 in: Hecht MK, Goody PC & Hecht BM (eds). Major Patterns in Vertebrate Evolution. Springer, New York (NY), ix+908 pp. DOI: https://doi.org/10.1007/978-1-4684-8851-7_12
  • Szalay FS & McKenna MC 1971. Beginning of the age of mammals in Asia: the Late Paleocene Gashato fauna, Mongolia. Bulletin of the American Museum of Natural History144, 269–318. http://hdl.handle.net/2246/1085
  • Ting S, Meng J, McKenna MC & Li C 2002. The osteology of Matutinia (Simplicidentata, Mammalia) and its relationship to RhombomylusAmerican Museum Novitates 3371, 1–33. http://hdl.handle.net/2246/2860
  • Upham NS, Esselstyn JA & Jetz W 2019. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biology17(12):e3000494, 1–44. DOI: https://doi.org/10.1371/journal.pbio.3000494
  • Van Valen L 1964. A Possible Origin for rabbits. Evolution 18(3), 484–491. DOI: https://doi.org/10.1111/j.1558-5646.1964.tb01624.x
  • Van Valen L 2002. How did rodents and lagomorphs (Mammalia) originate? Evolutionary Theory 12(5), 101–128 https://www.mn.uio.no/cees/english/services/van-valen/evolutionary-theory/volume-12/vol-12-no-5-pages-101-128-l-van-valen-how-did-rodents-and-lagomorphs-mammalia-originate.pdf
  • Velazco PM, Buczek AJ, Hoffman E, Hoffman DK, O’Leary MA & Novacek MJ 2022. Combined data analysis of fossil and living mammals: a Paleogene sister taxon of Placentalia and the antiquity of Marsupialia. Cladistics 38(3), 359–373. DOI: https://doi.org/10.1111/cla.12499
  • Wägele JW & Kück P 2014. Arthropod phylogeny and the origin of Tracheata (= Atelocerata) from Remipedia-like ancestors. pp. 285–341 in: Wägele JW & Bartolomaeus T (eds). Deep Metazoan Phylogeny: The Backbone of the Tree of Life. De Gruyter, Berlin (DE), xxv+736 pp. DOI: https://doi.org/10.1515/9783110277524 (PDF at https://www.researchgate.net/publication/260103510)
  • Wang Y 1995. A new zhelestid (Mixotheridia, Mammalia) from the Paleocene of Qianshan, Anhui. Vertebrata PalAsiatica 33(2), 114–137 [In English and Chinese]. http://www.vertpala.ac.cn/EN/Y1995/V33/I02/114
  • Wang YQ, Hu YM, Chow MC et al. 1998. Chinese Paleocene mammal faunas and their correlation. pp. 89–112 in: Beard KC & Dawson MR (eds). Dawn of the Age of Mammals in Asia. Bulletin of Carnegie Museum of Natural Histor 34, 348 pp. DOI: https://doi.org/10.5962/p.228609
  • Wang Y-Q, Li C-K, Li Q & Li D-S 2016. A synopsis of Paleocene stratigraphy and vertebrate paleontology in the Qianshan Basin, Anhui, China. Vertebrata PalAsiatica 54(2), 89–120. http://www.ivpp.cas.cn/cbw/gjzdwxb/xbwzxz/201604/P020160429371137449751.pdf
  • Wible JR, Rougier GW & Novacek MJ 2005. Anatomical evidence for superordinal/ordinal Eutherian taxa in the Cretaceous. Chapter 3, pp. 15–36 in: Rose KD & Archibald JD (eds). The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades. Johns Hopkins University Press, Baltimore (MD), 280 pp. https://books.google.at/books?id=DhchVG_rbQ8C
  • Wible JR, Rougier GW, Novacek MJ & Asher RJ 2007. Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature 447(7147), 1003–1006. DOI: https://doi.org/10.1038/nature05854
  • Wilson RW 1951. Evolution of the Early Tertiary Rodents. Evolution 5(3), 207–215. DOI: https://doi.org/10.2307/2405460
  • Wood AE 1957. What, if anything, is a rabbit? Evolution 11(4), 417–425. https://www.jstor.org/stable/2406062
  • Wood AE 1962. The Early Tertiary rodents of the family Paramyidae. Transactions of the American Philosophical Society NS 52(1), 1–261. https://www.jstor.org/stable/1005914
  • Wu S, Wu W, Zhang F, Ye J, Ni X, Sun J, Edwards SV, Meng J & Organ CL 2012. Molecular and paleontological evidence for a post-Cretaceous origin of rodents. PLoS ONE7(10):e46445, 1–11. DOI: https://doi.org/10.1371/journal.pone.0046445
  • Wyss AR & Meng J 1996. Application of phylogenetic taxonomy to poorly resolved crown clades: a stem-modified node-based definition of Rodentia. Systematic Biology 45(4), 559–568. DOI: https://doi.org/10.1093/sysbio/45.4.559
  • Zack SP 2004. An early eocene arctostylopid (Mammalia: Arctostylopida) from the Green River Basin, Wyoming. Journal of Vertebrate Paleontology 24(2), 498–501. DOI: https://doi.org/10.1671/3059
  • Zhou X, Sun F, Xu S, Yang G & Li M 2015. The position of tree shrews in the mammalian tree: Comparing multi-gene analyses with phylogenomic results leaves monophyly of Euarchonta doubtful. Integrative Zoology 10(2), 186–198. DOI: https://doi.org/10.1111/1749-4877.12116